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Spatial transcriptomics of healthy and
fibrotic human liver at single-cell resolution

Brianna R.Watson 1,2,7, Biplab Paul3,7, Raza Ur Rahman3,4, Liat Amir-Zilberstein4,
Åsa Segerstolpe4, Eliana T. Epstein5, Shane Murphy4, Ludwig Geistlinger6,
Tyrone Lee 6, Angela Shih5, Jacques Deguine 4, Ramnik J. Xavier 4,5,
Jeffrey R. Moffitt 1,2,4 & Alan C. Mullen 3,4

Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of
cell types and their heterogeneity within the human liver, but the spatial
organization at single-cell resolution has not yet been described. Here we
apply multiplexed error robust fluorescent in situ hybridization (MERFISH) to
map the zonal distribution of hepatocytes, spatially resolve subsets of mac-
rophage and mesenchymal populations, and investigate the relationship
between hepatocyte ploidy and gene expression within the healthy human
liver. Integrating spatial information from MERFISH with the more complete
transcriptome produced by single-nucleus RNA sequencing (snRNA-seq), also
reveals zonally enriched receptor-ligand interactions. Finally, MERFISH and
snRNA-seq analysis of fibrotic liver samples identify two hepatocyte popula-
tions that expand with injury and do not have clear zonal distributions.
Together these spatial maps of the healthy and fibrotic liver provide a deeper
understanding of the cellular and spatial remodeling that drives diseasewhich,
in turn, could provide new avenues for intervention and further study.

The liver is composed of parenchymal, non-parenchymal, and immune
cells that are organized into anatomic structures called lobules, which
are 0.5–1mm in diameter and defined by sites of portal venous and
arterial inflow and central venous outflow1,2. Within the lobule, hepa-
tocytes are classically organized into three zones, with zone 1 proximal
to the portal vein and hepatic artery, zone 3 proximal to the central
vein, and zone 2 in the intermediate region3,4. Hepatocyte zonation
matches function to the physiologic environment in both space and
time5. For example, hepatocytes in zone 1 are more involved in glu-
coneogenesis and beta-oxidation, reflecting the relatively oxygen- and
nutrient-rich environment near the portal vein and hepatic artery,
whereas hepatocytes in zone 3 are more active in glycolysis and lipo-
genesis, reflecting the depletion of oxygen and nutrients near the
central vein3,4,6. Beyond metabolism, morphogen expression, such as

that of Wnt-family members, is also shaped by this zonation and can
vary in time7. Thus, this zonal organization is critical for our under-
standing of hepatocyte activity. However, many details of this zona-
tion, including howhepatocytes adjust their gene expression along the
portal-central vein axis and the function of this potential spatial fine
tuning remain unclear in the human liver, as current single-cell ana-
lyses of the human liver have eithermeasured gene expressionwithout
spatial data or evaluated spatial data without single-cell resolution.

The liver is also composed of non-parenchymal cells, which
include hepatic stellate cells (HSCs), resident macrophages, endothe-
lial cells (ECs), and cholangiocytes8,9. While sub-populations of mac-
rophages and HSCs in the healthy human liver have been described in
single-cell data10–12, these subpopulations, and potential gene expres-
sion variations within, have not been resolved within the lobule
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organization at single-cell resolution in the human liver. As such, their
role within the spatial context of the liver also remains unclear.

In addition to spatial location, another feature of hepatocytes that
may drive functional heterogeneity is their ploidy13. Specifically, hepa-
tocytes in the adult liver can either be single or multinucleated, and
nuclei themselves can vary in ploidy. Early in life, most human hepato-
cytes are diploid and contain a single nucleus; ploidy increases with age
such that in adults, about a third of hepatocytes are multinucleated, or
their nuclei contain more than two copies of each chromosome14–16. Yet
the spatial organization of multinucleated hepatocytes and the impact
of nuclear content on gene expression remains poorly understood17.

Here, we apply image-based spatial transcriptomics (multiplexed
error robust fluorescence in situ hybridization; MERFISH) and single-
nucleus RNA sequencing (snRNA-seq) to the same samples of healthy
human liver in order to construct spatialmaps of hepatocytes and non-
parenchymal cells at single-cell and transcriptome-wide resolution.
This analysis allowed us to define gradients of gene expression across
human hepatocyte zones, determine the cell types where receptor-
ligand co-expression are in spatial proximity to promote crosstalk, and
evaluate the relationship between ploidy and gene expression within
hepatocytes. We also performed similar measurements in fibrotic liver
samples to understand the changes in hepatocytes and non-
parenchymal cells that occur with chronic injury. These analyses pro-
vide a single-cell spatial transcriptomic map of the human liver,
annotating the gradient in hepatocyte gene expression from the portal
area to central vein and show that hepatocyte ploidy is equally dis-
tributed across zones within the lobule and does not affect differential
gene expression. In addition, we define subsets of spatially distinct
macrophages and HSC populations, and identify the expansion of two
hepatocyte populationswith chronic injury, which together provide an
approach and framework to understand changes that occur with
human liver disease at single-cell resolution in space. More broadly,
the framework we provide for the joint spatial and transcriptomic
analysis of single cells within the healthy anddiseased human livermay
prove useful for the further study of the molecular, cellular, and tissue
remodeling that occurs in human liver disease.

Results
Spatial organization of hepatocytes in the human liver
To explore the spatial and cellular organization of the human liver, we
collected human liver tissue from the margins of surgical resections of
three adult patients (two female and one male; Supplementary Table 1).
While few patients undergo liver resection without suspicion of disease,
the absence of clear signs of acute or chronic injury in H&E images
supported our assignment of these samples as ‘Healthy’ (Supplementary
Fig. 1 and Supplementary Table 1). We designed a MERFISH panel tar-
geting 317 genes with a focus on hepatocytes (Methods; Supplementary
Data 1), and then characterized the expression of these genes within
cryosections taken from these samples using MERFISH18–20.

The distribution of key individual genes revealed the rich spatial
architecture of the liver and provided an initial validation of our
measurements. We observed sheets of cells expressing ALDOB, con-
sistent with hepatocytes21 (Supplementary Fig. 2), while CD5L expres-
sion was clustered in spaces between hepatocytes consistent with
resident macrophages located in sinusoids10 (Supplementary
Fig. 2a–f). PDGFRB expression was concentrated along the edges of
ALDOB-expressing hepatocytes in a distribution expected for HSCs,
which are located in the subendothelial space11 (Supplementary
Fig. 2a–f). KRT7 and SOX9were enriched in periportal areas consistent
with cholangiocytes and include clusters suggestive of longitudinal
sections of small bile ducts (Supplementary Fig. 2g–l), while DNASE13
and INMT expression were scattered through the parenchyma con-
sistent with the distribution of ECs10 (Supplementary Fig. 2g–l).

To define individual cells within our data, we included in our MER-
FISH measurements an immunofluorescence stain against a pan-cell

surfacemarker, theNa+/K+-ATPase22. This antibody stain was incorporated
into our MERFISH readout through the use of an oligonucleotide-tagged
secondary antibody22 (Methods). We then leveraged Cellpose23 to define
cell boundaries in three dimensions from these co-stains, assigned RNAs
within these boundaries, and applied an RNA-based segmentation rou-
tine, Baysor22, to adjust and improve these boundaries and recover cells
for which the co-stains did not provide clear boundaries (Supplementary
Fig. 3). Following this analysis and removal of cells with small numbers of
transcripts, we compiled a dataset of ~90,000 putative cells from the
healthy human liver (Supplementary Fig. 4).

The expression of all 317 genes was quantified in each cell to
generate a countmatrix for the human liver samples. The countmatrix
for the pooled data was then visualized by Uniform Manifold
Approximation and Projection (UMAP) after the application of batch
correction (Methods; Fig. 1a). Three clusters of hepatocytes were
defined alongwith twoHSC clusters, twomacrophage clusters, one EC
cluster, and one cholangiocyte cluster. Each cluster was defined by
established markers, supporting our cluster assignment (Fig. 1b; Sup-
plementary Data 2), and limited evidence of marker gene expression
outside of the cell types they define was observed, supporting our
segmentation (Supplementary Fig. 3c). Reflecting both the hepatocyte
focus of our MERFISH panel as well as the larger size of hepatocytes,
hepatocyte clusters contained more RNA counts and more expressed
genes than other clusters (Supplementary Fig. 4b–d). Nonetheless,
with the exception of lymphocyte and neutrophil populations, which
did not contain sufficient marker genes in our panel, the lower counts
observed per cell for non-hepatocyte clusters still allowed us to clearly
define all other major cell classes expected within the liver (Fig. 1a, b).

We next explored the spatial distribution of hepatocytes by
evaluating the expression of individual genes (Fig. 1c–f, Supplemen-
tary Fig. 5a). SDS was enriched in zone 1 (periportal), while CYP2E1
expression increased in zone 3 (pericentral), as previously described in
mouse24–27 (Fig. 1c, e, f; Supplementary Fig. 5a). In addition, we found
that CYP2A6 and ASS1 were enriched in portal regions similar to SDS,
while CYP1A2 and GLUL were enriched in central regions similar to
CYP2E1 (Fig. 1c, e, f–g). ALDOB and ADH1B were expressed in all
hepatocytes but were enriched in zone 2, with ALDOB expression
shifted towards zones 1 and 2 and ADH1B expression shifted towards
zones 2 and 3 (Fig. 1d, f). These results showed that MERFISH captures
differences in gene expression across zones within the hepatic lobule,
and we next asked how effectively we could define zonation with the
full MERFISH probe set. Mapping hepatocyte clusters 1, 2, and 3
(Fig. 1a) back to tissue sections showed clear zonal distribution, with
hepatocyte cluster 1 localizing to zone 1, hepatocyte cluster 3 to zone
3, and hepatocyte cluster 2 to zone 2 (between zone 1 and 3; Fig. 1h,
Supplementary Fig. 5b, c). Collectively, these observations are con-
sistent with the classic zonation described in human and mouse
liver4,24–26, supporting our MERFISH measurements.

While our analysis revealed that hepatocytes can be separated
into three populations, we noted that these populations are contained
within a single group of cells in the UMAP representation of the data
(Fig. 1a). This representation suggests that the classic liver zones
represent approximations of a continuous variable in gene expression
in hepatocytes determined by the spatial relationship between portal
and central areas of the lobule. To explore this possibility further, we
performed a pseudotime analysis on gene expression of hepatocytes
and found that the pseudotimemapped to a continuousdistribution in
space (Supplementary Fig. 5d–f). This gradient of gene expression
could also be observed across individual lobules (Fig. 1g), wheremany
genes show a gradient in gene expression from periportal to pericen-
tral regions (Supplementary Fig. 5g). Collectively, these observations
suggest that spatial gene expression in human hepatocytes is better
describedby a continuous variable determinedby the relative distance
between the portal and central areas of the lobule, similar to obser-
vations in mouse7,26,27.
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Spatial organization of non-parenchymal cells in the
human liver
We next expanded our analysis to include the spatial organization of
non-parenchymal cell types (Fig. 2). Two macrophage populations
were visualized in the healthy liver and showed different patterns of
distribution (Fig. 2a, b, c, Supplementary Fig. 6a). Macrophage (Mac)
cluster 1 was enriched in the periportal area and also dispersed

through the lobules, while cells from Mac 2 were scattered more dif-
fusely through the lobules. Both macrophage populations were iden-
tified by expression ofCD74, whileMac 2 cells also expressed CD5L and
MARCO (Fig. 2d, i; Supplementary Fig. 6b), most consistent with non-
inflammatory macrophages or Kupffer cells10,11,21.

Two clusters were also identified demonstrating patterns of gene
expression consistent with HSCs (Fig. 2a, b, e; Supplementary Fig. 6c).
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These cells also displayed different spatial distributions, with cells
from HSC 1 enriched in periportal regions and spread through the
lobules, while cells from HSC 2 were scattered more diffusely through
the lobules without periportal enrichment. These two populations
differed primarily in the levels of CD74 expression, while both popu-
lations expressed PDGFRB and LAMB1 (Fig. 2f, i; Supplemen-
tary Fig. 6d).

Cholangiocytes and ECs were also identified by MERFISH and
followed predicted distributions (Fig. 2a, b, g; Supplementary Fig. 6e).
Cholangiocytes were localized to portal regions and were identified by
expression ofKRT7 (Fig. 2h, left; Supplementary Fig. 6f, left), while ECs,
many of which line the sinusoids, were identified more diffusely
through the liver, and expressed DNASE1L3 (Fig. 2h, right; Supple-
mentary Fig. 6f, right). We did not note clear patterns of zonation in
gene expression within these non-parenchymal populations28–30, sug-
gesting that, if such gradients exist in the human liver, our MERFISH
library does not contain the proper genes to capture them.

Integration of MERFISH with snRNA-seq data
MERFISH identifies parenchymal and non-parenchymal cells in human
liver tissue at single-cell resolution and provides expression data for
hundreds of genes, but it does not cover the full transcriptome. To
address this limitation, we next performed snRNA-seq analysis for the
same human liver samples analyzed by MERFISH, profiling ~15,000
nuclei after filtering (Supplementary Fig. 7a). UMAP visualization and
Leiden clustering revealed a similar diversity of cell populations in the
snRNA-seq data to what we observed in the MERFISH data (Fig. 3a, b,
Supplementary Fig. 7b, c). We then leveraged standard data integration
tools to jointly cluster hepatocytes in the snRNA-seq data with those
measured in MERFISH (Fig. 3a, b; Supplementary Fig. 8a). Visualization
of the snRNA-seq data after this integration showed that we could
identify hepatocytes zones 1, 2, and 3 as seen in the MERFISH data, but
the axis of zonation within hepatocytes was not as clear in the snRNA-
seq data as it was in the MERFISH measurements (Fig. 1a; Fig. 3a).

Leveraging the snRNA-seq alone, we also defined two populations
of HSCs, two populations of macrophages, a population of cholangio-
cytes, and a population of ECs (Fig. 3a, b; Supplementary Data 2). The
gene expression profiles of the snRNA-seq clusters identified with this
analysis had expression profiles consistent with the corresponding
MERFISH clusters, supporting their assignment, cross validating the
expression profiles measured with both techniques, and providing fur-
ther support for the MERFISH segmentation (Supplementary Fig. 8b-d).
However, we did note some evidence of lower HSC and macrophage
marker expression in the cholangiocytes seenwith snRNA-seq relative to
those seen with MERFISH, consistent with modest segmentation chal-
lenges with these cells (Supplementary Fig. 8d). In addition, the snRNA-
seq data also identified a population of non-macrophage immune cells,
which were not defined in the MERFISH data (Fig. 3a).

Hepatocyte zonation shapes interactions with non-
parenchymal cells
While wedid not observe clear zonal distributions in non-parenchymal
cells, we noted that the variation in gene expression in hepatocytes

could nonetheless create a zonality to the interactions between
hepatocytes and these other cell populations. To explore this possi-
bility, we leveraged CellPhoneDB31 with our snRNA-seq data to explore
potential modes of cell-cell interactions that could be shaped by liver
zonation (Methods; Supplementary Data 3). Specifically, we focused
this analysis only on receptor-ligand interactions that are uniquely
enriched between hepatocytes of specific zones and the cell types in
close proximity to these zonated hepatocytes (Fig. 3c, Supplementary
Data 3). For example, in the periportal region hepatocytes (zone 1)
produced TGFB3, which can interact with TGFBR1 expressed in Mac 1
and Mac 2 cells. PLA2G2A, a secretory phospholipase32, can interact
with integrins a4b1 and a5b1, allowing periportal hepatocytes to signal
to HSC 1, HSC 2, Mac 1, Mac 2, and ECs. IL1RN produced by periportal
hepatocytes can also antagonize IL1R expressed by Mac 1 cells. TF
produced byMac 1 cells can signal to TFRC on periportal hepatocytes,
while HSC 1 and ECs expressed EFNA5 and EFNB2, respectively to
signal to portal hepatocytes through EPHA2 and EPHB1.

In the pericentral region, hepatocytes could signal to HSC 1 and
HSC 2 cells through expression of GDF7, which can be recognized by
multiple BMP receptors in HSC 1 andHSC 2 cells. Expression of TENM3
or TENM2by pericentral hepatocytes is recognized by ADGRL2 and/or
ADGRL3, which are expressed by HSC 1, HSC 2, andMac 1 cells. VEGFA,
expressed by pericentral hepatocytes is recognized by NRP2, expres-
sed by HSC 1 cells and NRP1 expressed by Mac 2 cells. HEBP1 from
pericentral hepatocytes could also signal to Mac 1 and Mac 2 cells
expressing FPR3, while pericentral expression of CCL16 could signal to
CCR1 expressed on Mac 2 cells. THBS1 and THBS2 produced by HSCs
can signal to CD36 expressed in pericentral hepatocytes. THBS1/2 is
detected at the highest level in HSCs and can signal to CD36 expressed
by pericentral hepatocytes (Supplementary Data 3), while the THBS1-
CD36 receptor-ligand pair is also enriched between pericentral hepa-
tocytes andmacrophages. GAS6 produced byHSC 1 and ECs can signal
to pericentral hepatocytes through MERTK, while SEMA4D expressed
by Mac 1 and Mac 2 cells, and VEGFB produced by Mac 2 cells can be
recognized by PLXNB2 and NRP1, respectively, both of which are
expressed by pericentral hepatocytes. ECs and Mac 2 cells also pro-
duce WNT2B, which can be recognized by FZD6-LRP5/6 in periportal
hepatocytes, with the highest interaction scores observed between
ECs and zone 3 hepatocytes (Supplementary Data 3). These findings
highlight receptor-ligand interactions that may regulate cross-talk
between hepatocytes and non-parenchymal cells in zone specific
patterns.

Effect of nuclear content on gene expression in hepatocytes
Hepatocytes have the capacity to replicate their nuclei without divid-
ing, generating polyploid and multinucleated cells14–16. It is not clear if
additional nuclear content leads to defined gene expression changes
that could modulate function, or to what degree zonation influences
nuclear content in the human liver. As an image-based approach to
transcriptomics, MERFISH naturally provides a measure of the nuclear
content of each cell. To leverage this capability, we counted the
number of nuclei observed in individual hepatocytes and correlated
this property with aspects of gene expression and spatial location.

Fig. 1 |Mappinghepatocyteswithin the architecture of thehealthy human liver
withMERFISH. aUniformmanifold approximation and projection (UMAP) of all cells
measured with MERFISH in the healthy human liver. b Heatmap displaying differen-
tially expressed genes that identify each cluster. Normalized gene expression is
indicated by color. Each column represents a single cell, and cells are grouped by
cluster as indicated by color at the left of the heatmap. Genes are indicated on the top
of the heatmap, and groups of genes characteristic of individual clusters are indicated
on the bottom. Hierarchical clustering is shown at the right. Genes enriched in each
cluster are shown. Genes may appear more than once if enriched in more than one
cluster. c–e Distribution of cells expressing SDS and CYP2A6 (enriched in zone 1, c),
ALDOB and ADH1B (most enriched in zone 2, d), and CYP2E1 and CYP1A2 (enriched in

zone 3, e) in a section of liver tissue. Scale bars: 1000μm. Expression level ismeasured
in normalized gene expression. fDot plot quantifying expression of genes mapped in
c–e where the size of the dot represents the percentage of cells expressing a specific
gene, and the color intensity indicates mean expression. gmRNA distributions across
a single lobule. Each dot represents an individual mRNA transcript for the indicated
gene oriented from a portal region at the top to a central region at the bottom. The
relative abundance of each transcript across the lobule was then plotted (lower panel)
for the same field of view. Scale bars: 50 μm. h Spatial distribution of cells assigned to
each cluster of hepatocytes (Hep 1, Hep 2, or Hep 3). Hep 1 cells (purple) map to
periportal areas (zone 1), Hep 3 cells (pink)map to pericentral areas (zone 3), andHep
2 cells (brown) map between Hep 1 and Hep 3 cells (zone 2). Scale bar: 1000 μm.
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Indeed, we observed both single and multinucleated hepatocytes in
the MERFISH data (Fig. 4a) and found that approximately a third of
hepatocytes were multinucleated (Fig. 4b). The distribution of single
and multinucleated hepatocytes did not change across hepatocyte

zones (Fig. 4c, d), and we did not observe any significant changes in
expression of genes between hepatocytes with one or two nuclei as
quantified byMERFISH (Fig. 4e). Nonetheless, the total RNA counts per
cell increased with nuclei number (Fig. 4f, left) as did the cell area
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(Fig. 4f, center), such that multinucleated hepatocytes tended to be
larger and contain proportionally more RNA transcripts, but RNA
density was not dependent on the number of nuclei (Fig. 4f, right).
These results suggest that multinucleated hepatocytes may contain
more RNA transcripts within proportionally larger cells, which may

underscore an increased metabolic capacity. However, this increase
does not appear to be associated with differential gene expression or
location of hepatocytes within the lobule, suggesting that these cells
do not have distinct functional roles in the healthy liver, at least within
the pathways we explored with MERFISH.
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Applying spatial transcriptomics in liver fibrosis
In order to explore the spatial and cellular remodeling that occurs in
the context of disease, we next performed MERFISH on human liver
samples from patients with liver injury and fibrosis (Supplementary
Table 1 and Supplementary Fig. 1).We leveraged the same protocols as
described above to image and segment cells and, in total, imaged
~220,000 cells (Supplementary Fig. 9). In order to compare hepato-
cytes between normal and fibrotic liver, we applied batch correction
methods to jointly integrate MERFISH data across all samples
(Fig. 5a, b; Supplementary Fig. 10). Instead of three zones of hepato-
cytes, this joint analysis produced two: a periportal cluster of hepa-
tocytes (Portal Hep) and a pericentral cluster of hepatocytes (Central
Hep), which collectively contained zone 1, 2 and 3 hepatocytes from
healthy liver (Fig. 5a, Supplementary Fig. 9b-d, Supplementary Fig. 10,
Supplementary Data 2). In addition, two clusters were also identified
thatwerealmost entirely composedofhepatocytes fromfibrotic injury
(Fibrotic Hep 1 and 2) (Fig. 5a, Supplementary Fig. 9b-d, Supplemen-
tary Fig. 10, Supplementary Data 2). Periportal hepatocytes and peri-
central hepatocytes retained their expected localization in the setting
of chronic liver injury (Fig. 5c), while the two clusters of hepatocytes
that emerged with fibrotic injury were distributed throughout the
lobules (Fig. 5d). A single cluster of HSCs and a single cluster of mac-
rophages were also identified (Fig. 5a, b; Supplementary Data 2). HSCs
displayed bands of cells across lobules, while macrophages were
spread more diffusely through the lobules (Fig. 5e). Thus, we find that
hepatocyte zonation is at least partiallymaintainedwith fibrotic injury,
while two injury-related hepatocyte states are enriched that do not
appear to retain zonation.

We next evaluated changes in gene expression between hepatocytes
in healthy livers and those with fibrotic injury using MERFISH (Fig. 5f;
Supplementary Data 4). For this analysis, we first separated healthy
hepatocytes into their original three zones (Healthy zone 1, 2, 3) and
compared expression to portal and central hepatocytes from fibrotic liver
(Portal Hep and Central Hep; Supplementary Data 4). Portal and central
hepatocytes from the fibrotic liver retain the same zonal expression of
marker genes as healthy zone 1, 2, and 3 and are characterized primarily
by a reduction in expression of these genes. We then evaluated gene
expression of the expanded fibrotic populations (Fibrotic Hep 1 and 2)
(Fig. 5f, bottom; Supplementary Data 4). The Fibrotic Hep 1 cluster
showed a general reduction in expression of genes enriched in hepato-
cytes, while the FibroticHep 2 cluster showed an increase in expression of
several notable genes, including SLC7A2,CPS1, ATP9A,DTX1, POR andEXT1
compared to all other hepatocyte populations.

Non-hepatocyte clusters also showed disease-associated gene
expression changes. For example, fibrotic macrophages showed a loss
of MARCO, CD5L, CD68 and retained an expression pattern that more
closely matched Mac 1 cells in normal liver (Fig. 5g), while fibrotic HSCs
maintained high levels of COL1A1 expression without a clear positive
signature from the other genes included in the MERFISH panel (Fig. 5h).

Transcriptome-wide expression changes in fibrosis
To expand our analysis transcriptome-wide, we next performed
snRNA-seq on the same samples characterized with MERFISH, col-
lecting ~13,500 nuclei across these three samples (Fig. 6; Supplemen-
tary Fig. 11). Analysis of the snRNA-seq data alone produced the same
non-parenchymal clusters as seen with MERFISH; however, to better
integrate the labeling of the hepatocytes, we jointly integrated and
clustered hepatocytes between these two measurements (Fig. 6a, b;
Supplementary Fig. 12a, b). Importantly, this analysis revealed nuclei in
the snRNA-seq data that were similar to the two fibrotic hepatocyte
clusters (Fibrotic Hep 1 and Fibrotic Hep 2) seen in the MERFISH
measurements, supporting the emergence of these two disease-
associated populations (Supplementary Fig. 12a, b).

We then used the more complete transcriptomic data from
snRNA-seq to evaluate differences in gene expression between

hepatocytes in healthy liver and livers with fibrotic injury. Indeed, a
large functional diversity of genes were differentially expressed
between hepatocytes within these conditions (Supplementary Data 4).
To organize this functionality, we performed gene ontology (GO)
analysis, which showed that genes induced with injury were enriched
across many metabolic pathways (Supplementary Data 5). We thus
focused on the more general category of metabolic processes
(GO:0008152) to capture these changes in gene expression (Fig. 6c,
Supplementary Data 6). When comparing all healthy to all injured
hepatocytes, the most highly enriched group of metabolic genes
include those with dehydrogenase, oxygenase, and hydrolase activity
along with nuclear receptors THRB, RORA, and ESR1 (Supplementary
Data 4 and Supplementary Data 6). Increased expression was also
observed in the ligases CPS1 and GLUL and the transporter SLC25A15,
which are involved in the urea pathway (Supplementary Data 6).

With injury, hepatocytes thatmaintainportal and central zonation
(Portal Hep and Central Hep) both continued to show increased
expression of hydrolases, oxygenases, and the nuclear receptors
THRB, RORA, and ESR1 in comparison to healthy hepatocytes from
zones 1, 2, and 3, and induction of dehydrogenases was most pro-
nounced in Central Heps with injury (Fig. 6c, Supplementary Data 4
and Supplementary Data 6). While oxygenases increase in both Portal
and Central Heps with injury, CYP2E1 shows the highest expression in
Central Heps with injury (Fig. 6c, Supplementary Data 4 and Supple-
mentary Data 6). The ligase CPS1 is increased in both populations, and
GLUL remainsmore restricted to Central Heps and ASS1 to Portal Heps
with injury. Within the hepatic populations that emerge with fibrotic
injury and do not show zonal distribution (Fibrotic Hep 1 and 2,
Fig. 5d), we again observe an enrichment in metabolic pathways, pri-
marily those involving fatty acids and amino acids, while pathways
involving RNA processing and ribosome biosynthesis are reduced
(Supplementary Fig 13a, b). Both Fibrotic Hep 1 and Fibrotic Hep 2
continue to show enriched expression of the nuclear receptors THRB,
RORA, and ESR1 (Fig. 6c, Supplementary Data 4 and Supplementary
Data 6) and maintain increased expression of CPS1 and SLC25A15.
Fibrotic Hep 1 cells are relatively more enriched in oxygenases com-
pared to Fibrotic Hep 2 cells and are notable for increased expression
of the phospholipase PNPLA333, along with ASPG, CPEB4, and PRKAG2.
Fibrotic Hep 2 cells show relative enrichment in expression of hydro-
lases, heat shock proteins (HSPH1 and HSP90AA1, while HSPH1 is
enriched in both Fibrotic Hep 1 and 2), and PLCB1 compared to Fibrotic
Hep 1 cells. The transmembrane receptor EGFR is increased in Fibrotic
Hep 1 and Fibrotic Hep 2 cells, while the transmembrane receptorGHR
is increased in all injured hepatocyte populations, and LEPR is enriched
in injured Portal Heps and Fibrotic Hep 1 and Fibrotic Hep 2 popula-
tions (Fig. 6c, Supplementary Data 4 and Supplementary Data 6).
These results show the metabolic impact of chronic injury on hepa-
tocytes, including common activation of nuclear hormone receptors
and genes that regulate the urea pathway, and more restricted
induction of transmembrane receptors, heat shock proteins, and the
phospholipase PNPLA3.

Gene expression was also evaluated in non-parenchymal cells.
With injury, macrophages showed changes in gene expression in
pathways including cell signaling, cell migration, and immune
response when compared to Mac 1 and Mac 2 from healthy livers
(Fig. 6d, Supplementary Data 2). Change in gene expression in HSCs
with injury included those involved with the extracellular matrix, cell
migration, and cell adhesion when compared to HSC 1 and HSC 2 in
healthy livers (Fig. 6e, Supplementary Data 2). ECs and cholangiocytes
also showed changes in gene expression across categories including
cell adhesion and cell surface receptor signaling with injury (Supple-
mentary Fig. 12c, d; SupplementaryData 2). These results show that the
macrophage population defined with injury is distinct fromMac 1 and
Mac 2 identified in healthy donors. Similarly, the HSC population
defined in injury is distinct from HSC 1 and HSC 2 in healthy donors.
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Discussion
Significant advances in mapping the human liver at single-cell resolu-
tion have been achieved recently with scRNA-seq and snRNA-
seq10,11,21,34. In parallel, platforms such as Visium12 now provide spatial
information, but it has remained challenging to assign transcripts to

individual cells and cell types located in close proximity. Here we
complement these previous efforts by developing protocols for the
application of MERFISH in human liver samples and using these
methods to achieve spatial transcriptomic analysis of >300 genes at
single-cell resolution in the human liver, profiling ~310,000 cells in
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both healthy and diseased liver. Combining MERFISH with snRNA-seq
then allowed us to analyze the broader transcriptome within spatially
resolved cell types and cell sub-types.

From these measurements, we were able to resolve three clusters
of hepatocytes that are spatially distinct across the lobule in healthy
human liver, characteristic of separation of hepatocytes into zones 1, 2,
and 3 moving from periportal to pericentral regions. While MERFISH
allows to us to define these zones, it is also evident through pseudo-
time analysis, measurement of gene expression across individual
lobules, and transcriptional analysis performed across lobules, that
zonation reflects a gradient from periportal to pericentral regions
rather than distinct zones. Thus, the classic three zones are, in reality,
an approximation for the continuous gene expression and functional
changes that occur in space with human hepatocytes—a proposal
consistent with recent single-cell analysis in the murine liver26,27.

With the development of fibrotic injury, many hepatocytes main-
tained a zonal phenotype, but we also observed the emergence of two
additional hepatocyte populations with fibrotic injury that show diffuse
distribution through the lobules without a portal or central bias (Fibrotic
Hep 1 and 2 populations; Fig. 5a, b, d). Specific genes identified as dif-
ferentially expressed can shift between MERFISH and snRNA-seq and
may reflect differences between nuclear and cytoplasmic distribution of
some transcripts, but a common theme from both analyses was enrich-
ment of genes in the urea pathway with fibrotic injury. CPS1 (Carbamoyl
phosphate synthetase I) is responsible for converting ammonia to car-
bamoyl phosphate to enter the urea cycle35, SCL7A2 encodes an arginine/
ornithine/lysine transporter and provides ornithine (either directly or
through conversion of arginine) to interact with carbamoyl phosphate to
form citrulline36,37, and SLC25A15, is an ornithine transporter in the urea
cycle38 (Figs. 5f and 6c). In addition, Fibrotic Hep 1 cells showed enrich-
ment in genes including PNPLA3, CPEB4, and ASPG, which are linked to
hepatic steatosis, steatohepatitis, and/or fibrosis33,39–41, and THRB, which
encodes the protein target of resmetirom, a medication shown to be
effective in treating nonalcoholic steatohepatitis42, together highlighting
additional pathways that may be altered in disease.

Twopopulations ofmacrophageswere identifiedbyMERFISH and
show different distribution patterns through the lobule. Mac 2 cells
were identified as MARCO+, CD5L+, and CD68+ with increased expres-
sion of VISG4 compared toMac 1 cells and were locatedmore diffusely
through the lobule,most consistentwith Kupffer cells.Mac 1 cells were
MARCO- and CD5L- with lower levels of CD68. While Mac 1 cells were
also found through the lobule, they did exhibit a distinct enrichment in
portal areas in contrast to Mac 2 cells. Further comparisons of gene
expression between Mac1 and Mac 2 with snRNA-seq confirmed these
expression patterns along with increased CD163, VCAM1, and TMEM26
in Mac 2 cells (Supplementary Data 2), all of which are evolutionarily
conserved markers of Kupffer cells43. While Mac 2 cells expressed
higher levels of IL18 compared to Mac 1 cells, we do not observe
the increased expression of GPNMB, SPP1, or LGALS1 in Mac 1 cells
necessary to link them to lipid associated macrophages (LAMs),
identified in the livers of healthymice and expandedwith steatosis43,44.
With the development of fibrotic injury, the macrophage population
lost expression of MARCO, CD5L, and CD68 in the MERFISH data, and
snRNA-seq analysis also showed reduction inMARCO and CD5L as well
as VCAM1 and CD163. While these features suggest movement away
from Kupffer cell markers, IL18 expression was maintained, and gene
expression remained distinct from the Mac 1 population (Fig. 6d).

MERFISH also identified two populations of HSCs. HSC 1 was
enriched in the portal areas compared to HSC 2, and both populations
were found distributed through the lobules. Within the genes eval-
uated by the MERFISH probes, the MHC class II chaperone CD7445

showed the greatest differential expression between the two HSC
populations, with highest expression observed in HSC 1 cells. A similar
effect was also observed in the snRNA-seq data. CD74 is expressed by
HSCs, can be induced by inflammatory signals such as IFN-γ and can

promote immune activation through MHC class II-mediated
interactions46,47. It is currently unclear if these CD74 positive and
negative populations represent HSCs with distinct antigen presenta-
tion abilities or possibly different histories of activation. Overall, the
injured HSC expression profile was distinct from HSC 1 and HSC 2
populations (Fig. 6e).

With single-cell spatial resolution, we evaluated receptor-ligand
coexpression in cells across hepatocyte zonation. Our MERFISH panel
was not designed to explore a diverse set of functional pathways in
HSCs,macrophages, or ECs across zones, but the current data do allow
us to ask about specific interactions driven by differential expression
of receptors or ligands in hepatocytes across zones. Indeed, we
observe that the zonal expression of receptors and ligands in hepa-
tocytes can shape the potential interactions with non-parenchymal
cells. In particular, we identified signaling interactions including a
thrombospondin signal (THBS1/2) from HSCs to CD36 in zone 3
hepatocytes, which may influence metabolic dysfunction associated
steatotic liver disease (MASLD)48, and the interaction of WNT2B,
expressed by ECs andMac 2 cells, with FZD6 and LPR5/6 expressed by
zone 3 hepatocytes49,50 helps validate this analysis. More broadly, this
analysis, like all single-cell receptor-ligand analyses, produced only
hypotheses of potential interactions. Nonetheless, this rich set of
hypotheses for spatially organized interactions could prove useful in
directing future functional studies.

MERFISH also provides data about nuclei and cell boundaries in
addition to gene expression, allowing us to link nuclei content to gene
expression within individual cells. We found that approximately a third
of adult hepatocytes are multinucleated14,16, in agreement with previous
descriptions of human liver. We did not quantify ploidy separately, but
based on these studies, we would predict that >80% of these multi-
nucleated hepatocytes are 2N14–16. While we did not observe a change in
relative gene expression with increase in nuclear content, we did
observe an increase in RNA transcripts. In addition, multinucleated
hepatocytes also tend to be larger in size, such that mRNA levels were
proportional to cell size. These findings are consistent with the inter-
pretation that cells withmore nuclei are both larger15 and express higher
levels of RNA. Most of the transcripts identified in hepatocytes are
cytoplasmic, but transcripts are also present in the nucleus. It is possible
that MERFISH data could be used to evaluate transcriptional activity
between different nuclei in the same hepatocyte, but this will require
additional tools to reconstruct nuclei from the stacked images and
control for the fraction of each nuclei visualized in an individual cell.

Taken together, our study applied MERFISH to create spatial
transcriptomic maps of the healthy and fibrotic liver at single-cell
resolution to define spatially and transcriptionally distinct sub-
populations of hepatocytes, macrophages, and HSCs within hepatic
lobules and distinct hepatocyte sub-populations that expand with
fibrotic injury. By combining MERFISH with snRNA-seq, we extended
the transcriptional profiles of cell types in these spatial maps to
understand unique receptor-ligand interactions involving hepatocytes
and non-parenchymal cells across hepatocyte zones and defined
changes in gene expression in spatially-resolved hepatocyte popula-
tions with injury. Finally, by evaluating nuclear content, we found that
multinucleated hepatocytes do not show differences in relative gene
expression compared to mono-nucleated hepatocytes, but tend to be
larger and produce more total transcripts. Future studies will now be
able to extend these approaches, expanding probe set libraries to
encompass additional RNA species to evaluate all cell types in the liver
and their broader transcriptional profiles at single-cell spatial resolu-
tion in health and disease.

Methods
Tissue collection
All liver samples were collected from excess surgical tissue at Massa-
chusetts General Hospital in accordance with protocols approved by
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the Mass General Brigham (MGB) or Dana Farber Cancer Institute
(DFCI) Institutional Review Boards (IRBs) including approval to pro-
vide data on age by decade and sex. All MERFISH and snRNA-seq
data presented within are from matched samples. Sex was not con-
sidered as a variable due to the small sample size. Patients were con-
sented under MGB protocol 2019P001245 (AM-061) or DFCI protocol
02-240 (all other samples). Patients consented under 2019P001245
received compensation of $10 USD and a parking pass. Patients con-
sented under 02-240 did not receive compensation. Tissue collected
was used for analysis, and additional tissue is not available for
distribution.

MERFISH sample preparation
Liver tissue sections (3–5mm thickness) were fixed by submerging in
fresh 4% v/v paraformaldehyde (PFA; EMS 15710) in 1X Phosphate
Buffered Saline (PBS; Ambion AM9625) for 3–5 hours at 4 °C with
gentle rocking. After fixation, tissue sampleswere then transferred to a
30%w/v sucrose (VWR, 0335) solution in 1XPBS supplementedwith 4%
v/v PFA and incubated overnight at 4 °C with gentle rocking. After
washing in 1X PBS, samples were placed in cryomolds on dry ice,
covered with Optimal Cutting Temperature media (OCT; Tissue-Tek
4583), wrapped in aluminum foil, and stored at −80 °C until use.

MERFISH library preparation
A panel of 317 genes were selected with a focus on those differentially
expressed between hepatocyte clusters12 supplemented with common
markers of non-parenchymal liver cells10. The MERFISH encoding
probes targeting these genes were designed using a previous
pipeline19,51. Briefly, each probe contained a 30-nt-long region specific
to the targeted RNA, concatenated with a series of readout sequences
that defined the binary barcode assigned to that RNA. EachmRNAwas
targetedwith 72 suchprobes. To encode these317 genes, we selected a
22-bit-long, constant Hamming weight and Hamming distance code
with a Hamming weight of 4 and a minimum Hamming distance of 4.
Each of the 72 encoding probes contained two readout sequences and
the complement of all encoding probes to a given gene contained
instances of the four readouts associated with the 4 bits in which they
had a ‘1’. This barcoding scheme contains 332 barcodes and we lever-
aged the 15 not used to encode RNAs as ‘blank’ barcode controls, not
assigned to an RNA (Supplementary Data 1).

Templates for these probes were designed by concatenating a
primer and a T7 promoter to the sequences (SupplementaryData 1), as
described previously, and the template pool was ordered from Twist
Biosciences. These templates were amplified into encoding probes in a
protocol that involved PCR, in vitro transcription, reverse transcrip-
tion, alkaline hydrolysis, and SPRI purification, as described
previously19,20,51,52.

MERFISH staining
The general workflow for MERFISH sample preparation includes sec-
tioning, permeabilization, cell boundary staining, RNA probe hybridi-
zation, acrylamide gel embedding, digestion, and photobleaching of
samples. These protocols have been described previously19,20,51,52.
Briefly, OCT-embedded tissues were cryosectioned at a thickness of 7
μm, and slices were transferred onto silanized, poly-lysine coated 40-
mm circular coverslips with fiducial beads, prepared as described
previously19,20,51,52. Following sectioning, tissue slices were briefly fixed
with 4% v/v PFA in 1X PBS at room temperature for 10minutes, washed
thrice with 1X PBS for 5minutes, and then permeabilized overnight at
4 °C in 70% ethanol. Samples were rehydrated in 2X saline sodium
citrate (SSC; Ambion AM9763).

To prepare samples for antibody staining of cell boundaries, tis-
sue samples were treated with 0.05% (v/v) proteinase K (New England
Biolabs [NEB]; P8107S) in pre-warmed (37 °C) 2X SSC for 10minutes at
37 °C. Samples were then rinsed with 2X SSC before incubating with a

blocking buffer (10% BSA, 3% v/v 6% v/v murine RNase inhibitor [NEB,
M0314L] in 2X SSC) for 30minutes. The samplewas then stainedwith a
primary antibody against the Na+/K+-ATPase (2 µg/ml, Abcam;
Ab76020) in the same blocking buffer for 30minutes at room tem-
perature. Excess primary antibodywas removed from the sampleswith
three, 10-minute, 2X SSCwashes at room temperature. The samplewas
stained with a secondary antibody using the same protocol as the
primary antibody (3.75 µg/ml; ThermoFisher; A16112). The secondary
antibody was labeled with an oligonucleotide using previous
protocols53.

Probes were hybridized to the sample at a concentration of
6–10 µM in a 30% v/v formamide (Fisher Scientific, AM9342), 10% w/v
dextran sulfate (VWR, 97062-828), 1mg/mL yeast tRNA (Thermo-
Fisher, 15401029) solution in 2X SSC for 48hours at 37 °C in a humi-
dified oven. Samples were rinsed by letting the samples sit in 30% v/v
formamide in 2X SSC before hybridization for at least 4 hours and
twice after hybridization for 30minutes each time at 37 °C.

To clear samples, they were embedded in a polyacrylamide gel
and then digested for two days with proteinase K, as described
previously19,20,51. Briefly, samples were embedded in a thin poly-
acrylamide film by inverting them onto a GelSlick-coated microscope
slide with a droplet of 4% acrylamide solution (4% v/v 20:1 acrylami-
de:bis-acrylamide [BioRad, 1610144] with 0.15% v/v TEMED [Sigma,
T7024] and 0.30% v/v ammonium persulfate [Sigma, 215589]). After
the gel polymerized for 2 hours, sampleswere coveredwith a digestion
solution (1%proteinaseK, 20%v/vSDS [ThermoFisher,AM9823], 0.25%
v/v triton-X [Sigma, T8787] in 2X SSC) and incubated at 37 °C for
24 hours. Samples were then rinsed multiple times with 2X SSC. In
order to remove autofluorescence, samples were photobleached
under a blue LED light at 4 °C for 24 hours. Samples were stored at 4 °C
until imaging.

snRNA-seq
Single nucleus extraction was performed based on previously-
described protocols54. A 2X stock of salt-Tris solution (ST buffer)
containing 292mM NaCl (Thermo Fisher Scientific, AM9759), 20mM
Tris-HCl pH 7.5 (ThermoFisher Scientific, 15567027), 2mMCaCl2 (VWR
International Ltd, 97062-820), and 42mM MgCl2 (Sigma Aldrich,
M1028) was prepared in ultrapure water. The day of each experiment,
for each sample, Tweenwith salts and Tris (TST) buffer wasmade from
1ml of 2X ST buffer, 60 µl of 1% Tween-20 (Sigma Aldrich, P-7949,
0.03% final), 10 µl of 2% BSA (NEB, B9000S, 0.01% final) and 930 µl of
nuclease-free water and supplemented with 1U/ml Protector RNase
inhibitor (Millipore Sigma, 3335402001). 1X ST buffer was prepared by
dilution 2X ST with ultrapure water (Thermo Fisher Scientific,
10977023) and supplemented with 0.5U/ml Protector RNase Inhibitor
(Millipore Sigma, 3335402001).

On dry ice, a section of frozen tissue was placed into a gentle-
MACS C Tube (Miltenyi Biotec, 130-093-237) with 2ml of TST buffer.
Tissue was immediately dissociated using a gentleMACS Dissociator
(Miltenyi Biotec, 130-096-427) using the m_Spleen_01_01 program
twice and incubated on ice for 5min to complete a 10min incubation
in Tween with salts and Tris (TST) buffer. C tubes were centrifuged at
4 °C for 2min at 500 g. The pellet was resuspended in TST buffer,
filtered through a 40 µmFalcon cell strainer (VWR, 43-50040-51) into a
50ml conical tube. The strainer was washed with 1ml 1X ST buffer
before use. An additional 1ml of 1X ST buffer was used to wash the
gentleMACSCTubes andfilter, and another 1mlwas added to thefilter
for a final wash. The sample was transferred to a 15ml conical tube and
centrifuged at 4 °C for 10min at 500 g. The pellet was resuspended in
1X PBS (-Mg/-Ca, Gibco, 10010023), 1% BSA (NEB, B9000S), and 1U/ml
Protector RNase Inhibitor (between 100-200μl depending on pellet
volume). The nucleus solution was filtered through a 35 µmFalcon cell
strainer (Corning, 352235).Nucleiwere countedusing a INCYTOC-chip
disposable hemocytometer (VWR, 22-600-100).
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Sample processing
MERFISH measurements. MERFISH measurements were performed
as described previously using a custom-microscope system52. The
entire slice was first imaged using a 10X objective and the DAPI stain,
and this mosaic was used to select the region of interest for MERFISH
measurements.

snRNA-seq. 8000–12,000 nuclei of the single nucleus suspension
were loaded onto theChromiumChips for the ChromiumSingle Cell 3′
Library (Chromium Next GEM Single Cell 3’ Kit v3.1; PN-1000268, PN-
1000120, PN-1000215) according to the manufacturer’s recommen-
dations (10x Genomics). Gene expression libraries were constructed
and indexed according to manufacturer’s instructions and pooled for
sequencing on aNovaSeq 6000 sequencer (Illumina). All libraries were
sequenced to a targeted depth of 400 million reads in the following
configuration: R1: 28 bp; R2: 90 bp; I1, I2: 10 bp.

Analysis
MERFISH decoding. MERFISH decoding was performed using a pre-
viously described pipeline19,20,51. Briefly, images from a single field-of-
view (FOV) were stacked into movement-corrected stacks containing
all z-planes and imaging channels, an optimal weighting was deter-
mined for the relative intensity of different image frames, and pixels
were assigned to individual barcodes using a soft decoding approach
based on nearest neighbors with a Euclidean distancemetric. Adjacent
pixels assigned to the same barcode were aggregated to form a
single RNA.

RNAs were assigned to cells using a combination of Cellpose23

(version 0.7.2) and Baysor22 (version 0.5.0). Briefly, we trained a cell-
pose model based on the Na+/K+-ATPase immunofluorescent stain and
created a label matrix using cellpose and this model for each FOV.
Cellpose was applied to each z-plane separately, and then overlapping
boundaries were combined across z-planes to create a 3D segmenta-
tion. We leveraged our previous pipeline19,20,51 to identify cell bound-
aries, connect boundaries across FOVboundaries, and parseRNAs into
these boundaries. This initial segmentation result was then refined and
improved with Baysor using the following parameters: scale 10, scale
standard deviation 50%, molecules/cell 3, and prior confidence 0.50.

MERFISH single-cell analysis. The output of Baysor was analyzed
using Scanpy55 (version 1.8.1). Initial processing concatenated the
MERFISH data into a single AnnData structure, filtered cells with less
than 3 genes and 15 RNA counts, normalized the remaining cells, and
applied a logarithmic scaling. Harmony was used as our data integra-
tionmethod in order to account for sample variation56. For the analysis
of the healthyMERFISH data, we used 100 PCA components and a final
Leiden resolution of 1.1 For the analysis of the MERFISH fibrotic data,
we used 150 PCA components and a final Leiden resolution of 1.2

snRNA-seq. Samples were demultiplexed using Illumina’s bcl2fastq
conversion tool and the 10x Genomics pipeline Cell Ranger (version
7.0.1) to perform alignment against the 10x Genomics pre-built Cell
Ranger reference GRCh38-2020-A (introns included). Cells with mito-
chondrial or ribosomal counts >10% and cells with <500 genes or
UMI < 500 were removed. Ambient RNA was removed using the
SoupX57 package (version 1.6.2). We focused on ambient RNA from
genes enriched in hepatocytes, as hepatocytes constituted almost 70%
of cells in the dataset. We included hepatocyte genes previously used
for ambient RNA removal (CYP2E1, ASGR1, CYP3A4, SCD, SLP1, CYP2B6,
CPS1, CRP, A2M, and ALB)12 but included ALB in a separate filter from
the other genes due to ts high detection across clusters. We added a
third filter (CYP27A1, CYP4A11, CYP4V2, CYP2B7P, CYP2A6, CYP2A7,
CYP3A5, CYP2C9, CYP2C8, CYP4F3, CYP3A43) based high expression in
hepatocytes in the current dataset. Next, doublets andmultiplets were
filtered out using DoubletFinder v2.0.458 for each individual sample.

Each sample’s count was normalized by the SCTransform method in
Seurat v4.3.0 with mitochondrial reads regressed out.

Healthy and diseased samples were each merged into individual
Seurat objects, and genes were projected into principal component
space using principal component analysis (RunPCA). Integration and
batch correction across subjects were performed with the Harmony50

Rpackage. Thefirst 20principal components processedwithHarmony
were used as inputs for the FindNeighbours and FindClusters func-
tions. Clustering for healthy samples was performed at a resolution of
1, chosen from tested resolutions (0.1, 0.2, 0.3, 0.4 0.5, 0.6, 0.7, 0.8, 0.9
and 1.0). The same resolution was used for diseased samples.

A shared-nearest-neighbor graph was constructed based on the
Euclidean distance metric in principal component space, and cells
were clustered using the Louvain algorithm. The RunUMAP function
with default settings was used to calculate 2D UMAP coordinates to
identify distinct cell populations. Cell types were assigned to clusters
using ScType59 with liver as the tissue annotation. We identified
hepatocyte, HSC, cholangiocyte, endothelial cell (EC), macrophage,
and an additional immune system cell, populations. A few sub-clusters
within the hepatocyte populationswere labeled asunknownby ScType
and were manually assigned the hepatocyte label based on gene
expression. All reported cluster labels for snRNA-seq data fromhealthy
or diseased samples reflects the assignmentsmade from the analysis of
the snRNA-seq data alone, with the exception of the hepatocyte sub-
divisions, which were jointly labeled by co-integrating with MERFISH
(see below). We performed joint integration of hepatocytes with
MERFISH as the zonal gene expression axis was not as apparent in
snRNA-seq analysis, and initial analysis of these data alone did not
recapitulate clusters that defined these gene expression gradients as
clearly as MERFISH.

Cluster-level quality control was then performed usingMALAT1, a
long noncoding RNA transcript retained in the nucleus52, as an indi-
cator of high-quality snRNA-seq clusters60,61. We removed two clusters
from thehealthy dataset and two from thefibrotic injurydatasetwhere
greater than 15% of cells contained fewer than threeMALAT1 reads. In
contrast, fewer than 2.7% of cells in any other cluster showed fewer
than three MALAT1 reads.

Integration of MERFISH and snRNA-seq data. To co-integrate the
healthy MERFISH and snRNA-seq measurements to identify the zonal
gradients within hepatocytes within the snRNA-seq data, we con-
catenated the two separate AnnData structures containing just hepa-
tocyte cells identified from the Leiden clustering described above.
Expression was logarithmically transformed, z-scored, and the genes
were trimmed to just those measured with MERFISH before con-
catenation. These cellswere then integrated usingHarmony inorder to
compare gene expression markers and labels across cell types, lever-
aging the inbuilt algorithms and defaults associated with scanpy. This
co-integrated data was clustered using Leiden clustering in order to
assess and group the hepatocytes between the two modalities. The
individual Leiden clusters were then annotated by leveraging a com-
bination of marker expression and the existing annotations derived
from the clustering analysis of the MERFISH data alone, as described
above. Importantly, this approach was used only to apply labels to the
snRNA-seq cells, and all expression analysis derived from this co-
integration was taken from the snRNA-seq cells.

Ligand-receptor analysis. Receptor-ligand interactions were eval-
uated using snRNA-seq data using CellPhoneDB31,62. We applied 1000
iterations and considered ligands and receptors for analysis if
expressed by at least 10% of cells (threshold = 0.1). Significant inter-
actions between hepatocytes and non-parenchymal cells (p-value of
0.05 or less) were only selected if the interactions involved hepato-
cytes fromone or twozones. Predicted interactionswere excluded if 1)
the interaction score for a significant interaction was less than the
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interaction score for non-significant interaction between hepatocytes
and the indicated cell type and 2) the ligand was expressed at a higher
level in the receptor cell than the ligand cell. Only interactions defined
as Ligand-Receptor are displayed.

Analysis of gene expression between hepatocytes in healthy liver
and livers with fibrotic injury. Differential expression analysis was
performed for the indicated comparisons using scanpy’s ranked genes
function using the t-test model. Genes were ranked by scores to
identify the 100 most induced genes for each comparison within
hepatocytes. GO analysis (biologic process; Panther release 19.0) was
performed as indicated for all healthy hepatocytes compared to all
hepatocytes in livers with fibrotic injury (Supplementary Data 5).
Results showed enrichment of metabolic pathways, and the broader
category of metabolic process (GO:0008152) was selected as the
broadest category to evaluate changes in metabolic genes. Genes
within this pathway were then evaluated for each subsequent com-
parison, and were further characterized by Panther protein class.

Gene set enrichment analysis (GSEA). Gene set enrichment analysis
(GSEA) was performed using GSEApy (version 1.1.3)63 to compare
Fibrotic Hep 1 and FibroticHep 2with both healthy hepatocytes and all
identified hepatocytes. The terms were derived from the
“GO_Biological_Process_2021” list.

Statistics and reproducibility
Statistical analyseswereperformedasdescribed.No statisticalmethod
was used to predetermine sample size for MERFISH or snRNA-seq. No
data that met the described criteria were excluded from the analyses.
The experiments were not randomized. The Investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MERFISH raw and processed data generated in this study have
been deposited in datadryad under the doi: 10.5061/dryad.37pvmcvsg
[https://datadryad.org/stash/dataset/doi:10.5061/dryad.37pvmcvsg].
The raw snRNA-seq data used in this study are available in the GEO
database under accession code: GSE210077. Processed data for
snRNA-seq have been deposited in datadryad under the doi: 10.5061/
dryad.37pvmcvsg [https://datadryad.org/stash/dataset/doi:10.5061/
dryad.37pvmcvsg]. To aid in the visualization of these data, a web
viewer has been created for the MERFISH and snRNA-seq presented in
this paper. This viewer can be accessed at: https://moffittlab.github.io/
visualization/2024_Human_Liver/index.html. Source data are provided
with this paper.
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